
1.  Introduction
Enzymes are proteins that are involved in most 

biochemical reactions in organisms. The aim of this work 
is to design a program capable of rapid and accurate design 
of new drugs based on enzyme inhibitors. An inhibitor is a 
molecule that binds to an enzyme more strongly than its 
substrate and therefore prevents the enzymatic reaction of 
the substrate. Examples of enzymes include the well-
known Ibuprofen.

The input of the prediction program is a protein - enzyme 
and its already known ligand - substrate. Using deep 
feedback learning methods, the program attempts to find a 
molecule that binds to the protein more strongly than the 
provided substrate and thus acts as an inhibitor of the 
protein. The process is iterative, and at each iteration the 
inhibitor candidates are suitably adjusted to maximize the 
binding between the enzyme and the inhibitor.

The program is designed to be general so that it can be 
easily extended to other enzymatic reaction types. Several 
additional programs have been designed to achieve the 
goal. Examples include NDock (Neural Molecular 
Docking), which is responsible for accelerated molecular 
docking, or libraries for easier manipulation and handling 
of molecular structure information files.

The predicted molecules are stable and bear similarity to 
the experimental inhibitors, but neither their synthesis nor 
subsequent experimentation was part of the work. The 
accuracy of the program is close to the accuracy of the 
classical Autodock 4 method. The main advantage of the 
developed program is its speed and low computational 
power cost. The library itself (under the name BIP - 
Bioinformatic Python) and its various functions, such as 
force fields, searching for non-covalent interactions or 
working with chemical files, is applicable in other 
programs.

2.  Method
Today's medicine is usually concerned with synthesising 

drugs that can be used for the largest possible proportion of 
the population. However, some fields of medicine require 
highly specific treatments tailored to the patient. An 
example is cancer, where the increase in mutations is so 
rapid and their properties so different that an effective cure 
for all is almost unattainable. However, a large, highly 

accurate and sufficiently fast bioinformatics apparatus is 
needed to design specific drugs.

After the disease-causing protein is discovered and its 
structure is also found, it can be inserted into the program 
itself. Here, important information such as electrical 
charge, aromaticity or free energy is first extracted and 
then entered into the database. The molecule then goes into 
a structure modification program that uses deep feedback 
learning. Here, the structure is iteratively refined over 
time. As a result, there are several possible, competitive 
inhibitors. These candidate inhibitors undergo testing to 
see if they are indeed inhibitors, so as not to further 
propagate possible errors. Candidates that pass the test are 
given a score, which is the sum of the free energies 
obtained using the NDock program. This score tells us how 
good a competitive inhibitor the inhibitor is. Only the 
molecule with the highest score is re- entered into the 
database for structure modification. This iteration 
continues until the number of iterations specified by the 
user is completed or the final molecule is found.

The steps of the program, and the results, are summarized 
below.

2.1. Program to Modify Molecule
At each step of the model, the molecule goes through 3 

main processes. First the molecule is treated, then it is 
classified, and finally it is given a score that tells how good 
an inhibitor it is. There are 4 separate deep feedback 
networks operating within the modification, each 
responsible for one part of the modification (Fig. 1).

Fig.1: Basic principle of molecule modification
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First, all the interconnected parts of the molecule are 
selected, which, even after their  removal, leave the 
molecule as a single unit. Their maximum size is 
determined by the user, with a size of 3 for smaller 
molecules and up to 7 for larger ones. However, the time 
and computational power requirements increase 
exponentially with larger size (Fig. 2).

Fig. 2: Allowed and disallowed parts of a molecule, disallowed 
parts are those that split the molecule into multiple parts.

For each selected part, a decision is then made whether or 
not to remove it. This is done by the first model. The atoms 
that have bonded with the removed atoms are then taken as 
the nodes from which the new part of the molecule will be 
built. These nodes are then given a score based on the 

number of bonds they can form (Fig. 3).

Fig. 3: Remove part and add nodes

Each node is then assigned links that are selected based on 
both its score and the output of the other model. Atoms or 
links are then selected to the bonds with the help of the third 
model. In the case of a link, this node is connected to 
another node with the help of the fourth model. If any of the 
newly added atoms has a score greater than zero, that atom 
then becomes a new node.

The ligand is modified by the model until no nodes 
remain. This happens gradually by selecting hydrogens as 
atoms, which always have a score of 0, or by joining nodes. 
In the initial stages of training, however, the ligand size may 
grow exponentially, but this can be avoided by setting limits 
on the start and removing them gradually (Fig. 4).

Fig. 4: Possible disappearance of the nodes of the molecule by 
adding hydrogens or joining, formation also ends when the possible 

limit of atoms is reached

3.  Classification
Using free energy, it is possible to determine how strong 

the ligand binding is in the active site, but it is not possible 
to tell if it is an inhibitor or a substrate. If we assume that the 
binding is strong enough, it is necessary to know the 
outcome of the reaction. Instead of the complicated and 
tedious calculation of the ligand reaction result, it is much 

simpler to use neural networks. For ligand resolution, a 
dataset was constructed from the KEGG, RCSB PDB, 
PubChem and ZINC databases. The dataset contains a set of 
proteins and their substrates, inhibitors and activators. Each 
protein and ligand were transformed into an N-Cube 
representation and then added together with its protein to 
the neural network model.

The model uses convolutional learning, kernels (matrices 
used as filters in CNNs) are applied to both protein and 
ligand and then combined into a single linear layer with a 
uniform result.

The initial dataset was split into training, validation, and 
test datasets, with the final results summarized below. The 
result was surprising, achieving up to 97% accuracy (Fig. 
5).

Fig. 5: Loss and accuracy of classifier training after transfer 
learning of convolutional networks

4.  Molecular Docking to Detect Competitive Inhibition
During enzymatic reactions, both the binding of ligands to 

enzymes and the eventual conversion of these substrates 
into products and termination of binding occur. Using the 
equilibrium constant Keq we are able to represent both 
reactions. Here, I have chosen free energy for the 
calculation, as we would require complex simulations for 
the kinetic constants.

There are 3 basic methods to estimate the free energy 
itself. Using the full scheme requires an evaluation of the 
free energy at each point, and hence complex integrations. 
Using a finite point, like the full scheme, requires 
knowledge of the neighborhood of the ligand when it is 
outside the active region of the protein.

The best solution, however, is an empirical calculation 
that only considers the position of the ligand in the active 
region. The use of this calculation is mostly applied in 
molecular docking, which tries to determine the position of 
the ligand in the active site using this very rough 
approximation of the free energy. Docking scores can be 
calculated based on the Lennard- Jones potential (taking 
into account the interaction of atoms, mainly Van der Wals 
forces), electrostatic forces and solvation parameters 
(representing the displacement of water during the ligand 
reaction).

5.  NDock – Neural Molecular Docking
The dataset was compiled using the KEGG database. The 

protein structure (in both pdb and mmcif format), and 
subsequently the active site structure, was obtained from 
the RCSB PDB (Protein data bank) and the ligand structure 
from PubChem (in sdf format). The larger the dataset, the 
better the results can be expected. Unfortunately, I did not 
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have enough computing power to take full advantage of this 
fact, so I constructed a dataset of average size with the 
largest possible variation (approximately 3000 entries).

Fig. 6: Example of Protein and its ligand used from my dataset, 
PyMOL server was used for illustration

Before the data can be used to train a neural network, it 
must be normalized for a uniform representation. Thus, 
active sites and their ligands and targets were extracted 
from each protein. The target here is meant to be the 
position of the ligand given in the pdb file, the ligand is the 
position of the downloaded pdf file, so the goal is to get the 
ligand to the position of the target (Fig. 7).

Fig. 7: Active site, target in orange, ligand in light blue

The ligand, target and active site are then normalized to 
the origin and rotated. The rotation is done by selecting the 
atom closest to the origin and then rotating it so that all 
dimensions, except y, are 0. Both the ligand and the active 
site are rotated in this way. The target is normalized and 
rotated by the same values as the active site.

The active site and ligand were converted to their 
respective representations (AMK and SELFIES sheets). A 
recurrent network was used for each part, which was pre-
trained on the encoder/decoder model due to lack of 
computational resources. The encoder outputs were then 
combined into a single linear layer. The use of recurrent 
networks has the advantage that we can have an unspecified 
number of inputs.

The output of the model is 6 numbers, these represent the 
displacement of the centre of the molecule in space and 
rotation in 3 angles using rotation matrices. The loss of the 
model is then calculated using RMSD (Root mean square 
deviation).

6.  Using Classification as a Reward System
The program uses feedback learning to modify the ligand 

and create a competitive inhibitor. However, in order to use 
feedback learning, we need a reward system by which the 
model can orient itself and learn how to proceed. 

Initially, the ligand must be classified, differentiated into 

substrate, inhibitor or activator, indicating to the model that 
the ligand must be changed into an inhibitor. In the case of 
classification as an inhibitor, the score deals with the 
measurement of enzymatic reactions and tells us how good 
the inhibitor is competitively.

These reactions are evaluated based on a docking score 
(NDock used here) modelling the free energy and then 
combined in a final score, in case of a classification other 
than inhibitor, the program is terminated.

7.  Results of the Molecule Modification Program
The goal of the program is rapid and accurate drug design. 

Therefore, three drugs that act as competitive  inhibitors  
were  selected,  namely   Acetazolamide,   Viagra   and   
Methotrexate (Fig. 8).

Fig. 8: Demonstration of input molecules, substrates, and 
experimentally determined competitive inhibitors

First, a dataset of their proteins, active sites and the 
substrates they inhibit was obtained. This data was entered 
into a program and 100 possible competitive inhibitors 
were obtained for each. The results were then divided into 2 
categories, those that most closely resembled the 
experimental results and those that received the highest 
reward (Fig. 9).

Fig. 9: Molecules with the highest score determined by the 
program. (A) Viagra. (B) Methotrexate. (C) Acetazolamide.

As can be seen here, the final results with the highest 
scores do not resemble their experimental counterparts. 
Even if they have higher programmed scores than the 
inhibitors themselves, it is difficult to say whether they are 
better, this could only be determined experimentally or by 
quantum chemical methods (Fig.10).

The molecules most similar to the experimental ones did 
not have the highest scores. These molecules, although 
bearing some similarity, started to form at the beginning of 
the program, then the further the program went on, the more 
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the molecules diverged. This phenomenon can also be 
explained by the fact that as the program goes on it gets 
better scores, so these molecules, even the experimental 
ones, are not the best. It's just that the properties of the 
ligand can be altered by a single changed atom, so 
concluding this assumption is rather wrong .

Fig. 10: Molecules with the highest similarity to the experimental 
results determined by the program. (A) Viagra. (B) Acetazolamide. 
(C) Methotrexate. Question marks indicate that the molecule was 

not found in the databases

The molecules generated by the program as possible 
competitive inhibitors of the previously mentioned 
substrates were finally compared with the database in 
PubChem and Zinc to see if they were valid and had already 
been synthesized. Of the said molecules, I just found 82% 
(2473 out of 3000 results) and was able to identify them. 
However, the remaining 18% passed as valid in a force field 
test to determine spatial arrangement .

8.  Comparison of Neural Docking and Classical 
Methods

The carbanic anhydrase protein (in pdb format under 
1dmy) in complex with the competitive inhibitor 
Acetazolamide, used for example in the treatment of 
epilepsy or glaucoma, was selected as an example of the 
results (Fig.11).

Fig.11: Example of docking target, crystallographically 
determined structure

To validate the classical methods, AutoDockTools 
software was first applied to add hydrogens, calculate 
charges, determine rotating ligand bonds, and determine 
the search space. The prepared protein and ligand were 
loaded into Autodock 4. The best result offered had an 
RMSD loss of 1.456 (Fig. 12).

Fig.12: The result of molecular docking using Autodock 4 
software, shown here in light blue

Subsequently, I repeated the process in my program. Here 
the final loss was 2.018 (Fig. 13).

Fig. 13: Result of Neural Docking, here marked in light blue

Then  I performed the same process on the extended 
dataset, each element of this data was not included in the 
training set for neural docking.

Table 1: Summary results for Autodock 4 and Ndock

Even though my loss was higher than the classical 
methods, it was still acceptable (the difference between the 
result and the target is such that the free energy calculations 
and other values are comparable to each other). The speed 
and efficiency, as expected, exceeded those of the classical 
methods. In the case of my program, the dataset of 1000 
molecules and their proteins took me around a few minutes 
to run, Autodock 4 took several days.

9.  Conclusion
The main goal of the work was to develop a program using 

deep feedback learning for the design of new competitive 
inhibitors. To achieve this goal, the program NDock was 
created using neural docking as a faster but not more 
accurate alternative to existing methods such as Autodock 
4. In my work, I additionally created several libraries, 
mostly in the Python programming language.

Although NDock does not show the same accuracy as 
classical methods, its results are sufficient. However, its 
main advantage is its speed and low computational power 
cost. The program creates realistic, mostly already 
synthesized molecules. The library itself and its various 
functions, such as force fields, searching for non-covalent 
interactions or working with chemical files (sdf, pdb, 
mmcif), is applicable to other problems, but at the time of 
writing the library is far from complete.

The structure of the program itself is very flexible. If the 
score to be followed is defined correctly, the meaning and 
the goal can be easily changed. The work itself focuses only 
on competitive inhibitors, but the exact same procedure is 
applicable to other inhibitors, even other types of ligands. 
The idea that the input is the substrate, and the output is the 
inhibitor is also changeable. The input can be the 
experimental inhibitor itself and the function of the 
program becomes the modification of the inhibitor. In this 
way, the system can be adapted to any work with 
modification or creation of molecules.
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